What’s Missing For
Postgres Monitoring

@LukasFittl

What are the problems
with Postgres monitoring?

It’s Incomplete.
It’s hard to access & understand.
It contains sensitive information.

It’s Incomplete.
It’s hard to access & understand.
It contains sensitive information.

Connections

Query planning

Query execution

Shared resources

Maintenance

Connection Connection

Handling Security
Query

Planning
Active Historic Parallel Query

Queries Queries Query Failures

Heavyweight| | Table/Index CPU, I/0 WAL

Locks Access & Memory Writing
Utility Autovacuum Backups

Commands

Connection Handling

pg_stat_activity

Log events

Connection received

Disconnection

Incomplete startup packet (client failed to connect)

Could not receive data from client / connection to client lost
EOF on client connection with an open transaction
Terminating connection due to administrator command

Remaining connection slots are reserved for superuser (out of connections)
Too many connections for role

Could not accept SSL connection
Unsupported frontend protocol
Incomplete message from client

——

What’s Missing

Client-side connection latency

Planning Time Execution Time
Application libpg Query Planning Query Execution
Connection
Roundtrip
Time

Hard to track from the Postgres server side
- could libpg have built-in measurements here?
- should \timing in psqgl give connection time and planning/execution time separately?

Connection Security

pg_stat_ss|
pg_stat_gssapl

Log events

Connection authorized
Authentication failed / pg_hba.conf rejects connection

What’s Missing

Aggregation of security-relevant
Postgres events

Which |IPs logged in as superuser?
How many login failures occurred recently?

Which of my pg_hba lines are matching®?

Query

Query planning Planning

Query Planning

EXPLAIN
New EXPLAIN: Buffers for Planning
New pg_stat_statements planning time

Log events
auto_explain

New In Postgres 13

EXPLAIN: Buffers for Planning

Planning Time: 45.882 ms

New In Postgres 13

Pg_stat_statements:
Planning Time

=# SELECT queryid, substring(query for 40), mean_exec_time, mean_plan_time, max_plan_time FROM pg_stat_statements ORDER BY mean_plan_time
LIMIT 5;

queryid | substring I mean_exec_time | mean_plan_time | max_plan_time
—————————————————————— ittt it bttt it St
586048399314747810 | WITH upsert(backend_id, server_id, ident | 0.440361 | 5.890649 | 5.890649
5426874022189006220 | WITH data(table_id, name, first_snapshot | 18.846979 | 5.452164 | 5.452164
3576712877697568576 | WITH data(table_id, name, first_snapshot | 17.85431479746835 | 5.032493797468352 | 12.714722
-1758450264182311255 | WITH data(table_id, name, first_snapshot | 17.870344956521738 | 4.544071499999999 | 6.236185
-1076182304104233502 | WITH data(table_id, name, first_snapshot | 15.446047395348836 | 3.378207406976743 | 5.378551

(5 rows)

What’s Missing

Aggregate Plan Statistics

Many experimental Postgres extensions
(pg_stat_plans, pg_store_plans, pg_stat_sqgl_plans, etc)

Not production ready, or merge-able into Postgres core

Query execution

Active
Queries

Historic
Queries

Parallel
Query

Query
Failures

Active Queries

pg_stat_activity
(state, query_start, xact_start, wait events)

New In Postgres 13

Additional & renamed
wait events

Report wait event for cost-based vacuum delay.

Add description about LogicalRewrite Truncate wait event into document.
Add description about GSSOpenServer wait event into document.
Correct the descriptions of recovery-related wait events in docs.
Rename the recovery-related wait events.

Add wait events for WAL archive and recovery pause.

Add wait events for recovery conflicts.

Report missing wait event for timeline history file.

Report time spent in posix_fallocate() as a wait event.

Drop the redundant "Lock" suffix from LWLock wait event names.
Mop-up for wait event naming issues.

What’s Missing

Breakdown of non-waiting
active state

postgres=# SELECT state, wait_event_type, wait_event, substring(query for 100) FROM pg_stat_activity WHERE backend_type = 'client backend’;

state | wait_event_type | wait_event | substring

———————— et e e et et et e L E L e
active | | | COPY public.log_lines_30d_20200516 (log_line_id, server_id, backend_pid, occurred_at, log_file_id, 1

active | | | COPY public.log_lines_30d_20200514 (log_line_id, server_id, backend_pid, occurred_at, log_file_id, 1

active | | | COPY public.log_lines_30d_20200517 (log_line_id, server_id, backend_pid, occurred_at, log_file_id, 1

active | | | COPY public.log_lines_30d_20200515 (log_line_id, server_id, backend_pid, occurred_at, log_file_id, 1

active | | | SELECT state, wait_event_type, wait_event, substring(query for 100) FROM pg_stat_activity WHERE back

1dle | Client | ClientRead |

(6 rows)

perf top -g

Samples: 379K of event 'cpu-clock:pppH', 4000 Hz, Event count (approx.): 55672843733 lost: 0/0 drop: 15165/199698

Children Self Shared Object Symbol
+ 58.01% 0.91% postgres [.] CopyFrom
+ 460.72% 1.54% postgres .] NextCopyFrom
+ 23.08% 0.98% postgres .] InputFunctionCall
+ 20.72% 5.71% postgres .] NextCopyFromRawFields
+ 15.13% 0.03% perf .] __ordered_events__flush.part.0
+ 15.08% 0.03% perf .] deliver_event
+ 14.73% 0.02% perf [.] hist_entry_iter__add
+ 11.81% 0.82% perf [.] iter_add_next_cumulative_entry
+ 11.060% 0.45% postgres .] timestamp_1in
+ 8.77% 0.99% postgres .] DecodeDateTime
+ 8.36% 0.22% [kernel: k] do_syscall_o4
+ 7 .29% 0.27% [kernel_ k] __softirgentry_text_start
+ 6.97% 0.01% [kernel_ k] net_rx_action
+ 6.54% 0.01% [kernel k] ena_1io_poll
+ 6.13% 0.00% 1ibc-2.31.so [.] __libc_start_main

perf top -g

Samples: 379K of event 'cpu-clock:pppH', 4000 Hz, Event count (approx.): 55672843733 lost: 0/0 drop: 15165/199698
Children Self Shared Object Symbol
- 58.01% 0.91% postgres [.] CopyFrom
- 7.70% CopyFrom
- 11.96% NextCopyFrom
+ 15.40% NextCopyFromRawFields
- 11.65% InputFunctionCall
4.84% uuid_1in
+ 4.26% timestamp_1in
+ 1.70% heap_multi_insert

+ 0.91% __libc_start_main

+ 46.72% 1.54% postgres .] NextCopyFrom

+ 23.68% 0.98% postgres .] InputFunctionCall

+ 20.72% 5.71% postgres .] NextCopyFromRawFields

+ 15.13% 0.03% perf .] __ordered_events__flush.part.0
+ 15.08% 0.03% perf .] deliver_event

+ 14.73% 0.02% perf .] hist_entry_iter__add

1 1 o100/

>

oﬁn/ IAAIA-C I_ 1 -.J—AIA -AA IAA\IJ— e B B EAMA e l1 -J—-."A AIAJ—I“'

What’s Missing

Query Progress Monitoring

Historic Queries

Pg_stat_statements

[Log Events

Slow query (log_min_duration_statement)
Statement notice (log_statement)
auto_explain

What’s Missing

Better handling of IN(...) lists
& other ORM patterns

What’s Missing

Linking pg_stat_statements
with other views & logs

What’s Missing

Finding queries based on
application requests/customers

pg_stat_statements has no way of differentiating
queries beyond the queried

SQL Statement EXPLAIN Plan
Customer Web Request
SQL Statement

Which customers were affected by a slow query?

What was the EXPLAIN plan for a SQL query involved
In a particular slow web request?

Solution for per-customer analysis:

“citus stat statements” in Citus extension

SELECT partition_key as tenant_id,
count(*) as tenant_unique_queries,
sum(calls) as tenant_total_queries,
sum(total_time) as total_query_time

FROM citus_stat_statements

WHERE partition_key 1s not null

GROUP BY tenant_id

ORDER BY tenant_total_queries DESC

LIMIT 5;

tenant_id | tenant_unique_queries | tenant_total_queries | total_query_time

——————————— i e
12 | 148 | 159295 | /53142 .54
2 | 2045 | 238460 | 12957.83
1 | 4 | 9572 | 8492 .05
034 | 175 | 12753 | 08760.11
301 | 375 | 3653 | 0422.93

Solution for finding particular web requests:

Application adds comments to locate specific
queries + auto_explain/log_min_duration_statement

/*

application:pganalyze,

controller:graphgl,

action:graphqgl,
Lline:/app/services/dataload.rb:39:1n "select_rows',
graphgl :getQueryDetai1lStats,
request_1d:55a6fal2d-9ffe-4374-a535-f5d1leeb4bad4

*/

What’s Missing

Built-in Walit Event Aggregation

500
450
400
350
300
250
200
150

100

50.

0

14:03:29

14:03:19 14:03:39

~ll= _ock:tuple
LWLockTranche:wal_insert

-p | WLoCkTranche:buffer_mapping

== | WLockNamed:XidGenLock

-—&— L WLockNamed:WALBufMappingLock

=& L WLockNamed:CLogControlLock

14:03:49

R o X

14:04:09

14:03:59 14:04:19

- Lock:transactionid

-4 | WLockTranche:lock_manager
LWLockTranche:buffer_content
LWLockNamed:WALWriteLock
LWLockNamed:ProcArraylLock

pg_wait_sampling

History

0 CPU ® LWLock / wal_insert

® LWLock / WALWriteLock @ LWLock / buffer_content 0 Client/ ClientRead 010 / DataFileRead 0 Other

50 —
May 25 01:39:40pm PDT
40 —
o CPU: 0
30 - ® LWLock / wal_insert: 37
@ LWLock / WALWHri...: 7
20 —
® LWLock / buffer_c...: 5
10 O Client / ClientRead: 0
10 IO / DataFileRead: 0
0 T T T Q . T T T T T T T 1
01 PM 01:15 01:30 O Other: 0 5015 02:30 02:45 03 PM 03:15 03:30 03:45
U Refresh O Feedback x
@‘ Long running queries @ Wait Statistics
. - ‘ , ® Q Total 1.99
e HQ' Sl vCPURA Core Slice by Waits v
L= - @ cru 2.09
10:XaciSync 1
Top Wait Events - Lock:itransactionid 0.15
QA Q 2 10:ControlFileSyncupd... 0
Aggregation Window) @ Lockituple 0.03
15 MINUTES = ® 10:WALWrite 0
Y LWLock:buffer_content 0
Y > May30 06:00:00
Cient - ClientRead @
60 5.16«
%0 IPC - ExecuteGather @
- = izfdt Py Waits SQL Hosts Users Qsezrch SQL @ &
2K |——| 583
LWLock : buffer_content @
o ” o, BT
| |0.83 WITH cte AS (SELECT id FROM authors LIMIT ?) UPDATE authors s SET email = 2 FROM cte WHERE s.id = cte.id
QUERY ID QUERY TEXT EVENTTYPE : EVENTNAME WAIT EVENT SAMPLE COUNT

3374150825 UPDATE pgbench_tellers SET tbalance = tbalance + -3872 WHERE tid = 12 E _— 82425

311980869 update title_akasset itle = CASE rightittie 3) WHEN i THEN et L. | [I]

2283875512 SELECT abalance FROM pgbench_accounts WHERE aid = 4919091

1898114587 UPDATE pgbench_accounts SET abalance = abalance + 3556 WHERE aid ... E

73733

= I, 7

25412

select count(*) from authors where id < { select max{id) - ? from authors) and id > { select max(id) - ? from authors) union select ...

delete from authors where id < { select max(id) - ? from authors) and id > { select max(id) - ? from authors)

select count(*) from authors where id < { select max{id) - ? from authors) and id > { selec

[

t max(id) - ? from authors) union select ...

select count(*) from authors where id < { select max{id) - ? from authors) and id > { select max(id) - ? from authors) union select ...

delete from authors where id < { select max(id) - ? from authors) and id > { select max(id) - ? from authors)

Parallel Query

pg_stat_activity
(backend_type = parallel worker)

New pPQ_stat_activity
(leader_pid)

New EXPLAIN improvements

New In Postgres 13

pg_stat_activity:
leader_pid for Parallel Query

SELECT backend_type, leader_pid, state, wait_event, wait_event_type, query FROM pg_stat_activity WHERE state <> 'idle';

backend_type | leader_pid | state | wait_event | wait_event_type | query
————————————————— et it e et e et et e e
client backend | 36936 | active | DataFileRead | I0 | SELECT * FROM log_lines_30d ORDER BY occurred_at DESC LIMIT 10;
parallel worker | 36936 | active | DataFileRead | I0 | SELECT * FROM log_lines_30d ORDER BY occurred_at DESC LIMIT 10;
parallel worker | 36936 | active | DataFileRead | I0 | SELECT * FROM log_lines_30d ORDER BY occurred_at DESC LIMIT 10;

(3 rows)

New In Postgres 13

EXPLAIN improvements for
parallel workers

-> Sort (cost=2332874.02..2388749.59 rows=22350229 width=206) (actual time=28998.140..28998.143 rows=20 loops=3)

Sort Key: log_lines_30d.occurred_at DESC

Sort Method: top-N heapsort Memory: 34kB

Worker 0: Sort Method: top-N heapsort Memory: 35kB
Worker 1: Sort Method: top-N heapsort Memory: 35kB

+ JIT Information
+ JSON format fixes

What’s Missing

Aggregate information about
Effectiveness of Parallel Query

Are my queries using parallel query??
Are there sufficient workers for parallel query??

Query Failures

Log Events

Canceling statement due to statement timeout
Canceling statement due to user request
New CONTEXT for failure of parameterized queries

New In Postgres 13

CONTEXT for failure
of parameterized queries

ERROR: division by zero
STATEMENT: SELECT 1/%1

SET log_parameter_max_length_on_error = 1024

ERROR: division by zero
CONTEXT: extended query with parameters: $1 = 'Q’
STATEMENT: SELECT 1/%1

Shared resources

Heavyweight
Locks

Table/Index
Access

CPU, I/0
& Memory

WAL
Writing

Heavyweight Locks

pg_locks

Log Events

Process acquired lock on tuple / relation / object
Process still waiting for lock on tuple / relation / object
Canceling statement due to lock timeout

Deadlock detected (transaction rolled back)

Process avoided deadlock by rearranging queue order

What’s Missing

Aggregate Lock Statistics

Difficult to use pg_locks for
historic data

(e.g. pg_stat_statements lock_wait_time column)

Table/Index access

pg_stat_all_tables
pg_statio_all_tables

pg_stat_all_indexes
pg_statio_all_indexes

What’s Missing

Per-statement
iIndex scan/seq scan counters

pg_stat_statements should have idx_scan and seq_scan counters

CPU, I/O and Memory

System metrics

pg_statio_".
New PJ_shmem_allocations

What’s Missing

Connection memory usage
statistics

New In Postgres 13

pg_shmem_allocations

=# SELECT * FROM pg_shmem_allocations ORDER BY allocated_size DESC;

DI‘II‘III'\I/\I"I C-I—I"I-I—II(‘ Alfllflf'l\l

OON"T7NNCNON

PO N O~

I29O0A”DO20A

name | of f | size | allocated_s1ize
————————————————————————————————————— et e it e
Buffer Blocks 86739584 | 8589934592 8589934592 <= shared_buffers
<anonymous> 91191424 91191424
Buffer Descriptors 19630720 671088064 67108804
Buffer I0 Locks 8676674176 33554432 33554437
Checkpointer Data 3808573696 25165888 25165952
Checkpoint BufferIds 8710228608 20971520 20971520
XLOG Ctl 104832 16803472 16803584
8849116416 8033024 8033024
Xact 16908800 2116320 2116352
Backend Activity Buffer 8807698304 541696 541696
Subtrans 19158912 267008 267008

WAL Writing

pg_current_wal_Isn

New Per-statement WAL statistics

New autovacuum WAL statistics
New EXPLAIN WAL statistics

New In Postgres 13

Per-statement WAL statistics

=# SELECT substring(query for 70), wal_records, wal_fpi, wal_bytes FROM pg_stat_statements ORDER BY wal_records DESC;

substring | wal_records | wal_fpi1 | wal_bytes
—— e et e et e e P
COPY public.log_lines_30d_20200525 (log_line_id, server_id, log_line_p 13637990 | 1690272 | 11920182549
CREATE TEMPORARY TABLE upsert_data (server_id uuid NOT NULL, backend_1 8568987 5479 881673525
COPY activity.query_origins_7d_20200525 (backend_query_id, database_1id /507811 789923 5790656931
COPY activity.backend_snapshots_1d_20200525 (collected_at, state, wait 6909068 802625 5241077274
CREATE TEMPORARY TABLE upsert_data (server_id uuid NOT NULL, identity 6541995 11087 /05700102
CREATE TEMPORARY TABLE upsert_data (server_id uuid NOT NULL, 1identity 64185606 31123 /71654086
COPY public.log_line_stats_30d_20200525 (log_line_id, server_id, occur 5338310 722396 4800621926
DROP TABLE upsert_data 5056385 13 269723603
COPY public.log_lines_30d_20200524 (log_line_id, server_id, log_line_p 3162220 496058 3261770520
DROP TABLE upsert_data 2134608 6 113901008

New In Postgres 13

autovacuum WAL statistics

LOG: automatic vacuum of table “.”: 1ndex scans: 1
pages: 0 removed, 75444 remain, 3 skipped due to pins, @ skipped frozen
tuples: 996760 removed, 4210912 remain, @ are dead but not yet removable, oldest xmin: 1871789
buffer usage: 114171 hits, 1 misses, 21614 dirtied
avg read rate: 0.001 MB/s, avg write rate: 20.434 MB/s
system usage: CPU: user: 2.42 s, system: 0.03 s, elapsed: 8.26 s
WAL usage: 94004 records, 17930 full page images, 34394711 bytes

New In Postgres 13

EXPLAIN WAL statistics

—# BEGIN;
BEGIN

=*# EXPLAIN (ANALYZE, WAL) UPDATE backend_counts SET state = state WHERE backend_count_id IN (SELECT backend_count_id FROM backend_counts LIMIT 100);
QUERY PLAN
Update on backend_counts (cost=4.47..850.04 rows=100 width=139) (actual time=1.049..1.049 rows=0 loops=1)
WAL: records=168 fpi=5 bytes=39013

-> Nested Loop (cost=4.47..850.04 rows=100 width=139) (actual time=0.239..0.734 rows=100 loops=1)
WAL: records=2 bytes=416

-> HashAggregate (cost=4.04..5.04 rows=100 width=56) (actual time=0.229..0.246 rows=100 loops=1)
Group Key: "ANY_subquery".backend_count_1id
Peak Memory Usage: 45 kB
-> Subquery Scan on "ANY_subquery" (cost=0.00..3.79 rows=100 width=56) (actual time=0.014..0.202 rows=100 loops=1)
-> Limit (cost=0.00..2.79 rows=100 width=16) (actual time=0.011..0.184 rows=100 loops=1)
-> Seq Scan on backend_counts backend_counts_1 (cost=0.00..119801.53 rows=4291453 width=16) (actual time=0.010..0.177 rows=
-> Index Scan using backend_counts_pkey on backend_counts (cost=0.43..8.45 rows=1 width=99) (actual time=0.005..0.005 rows=1 loops=100)

Index Cond: (backend_count_id = "ANY_subquery".backend_count_id)
WAL: records=2 bytes=416

Connections

Query planning

Query execution

Shared resources

. Maintenance

Connection Connection

Handling Security
Query

Planning
Active Historic Parallel Query

Queries Queries Query Failures

Heavyweight| | Table/Index CPU, I/0 WAL

Locks Access & Memory Writing

Utility Commands

PQ_Sstat_progress_vacuum

New PQ_stat progress_analyze
pg_stat_progress_cluster
pg_stat_progress_create_Iindex

New In Postgres 13

pg_stat_progress_analyze

=# SELECT * FROM pg_stat_progress_analyze ;
pid | datid | datname | relic | phase | sample_blks_total | sample_blks_scanned | ext_stats
——————— e bt it et s s et et St e
30936 | 16400 | pganalyze_staging | 115537 | acquiring sample rows | 30000 | 26756 |
(1 row)

autovacuum

PQ_Sstat_progress_vacuum

Log Events

Canceling autovacuum task

Database must be vacuumed within N transactions (TXID Wraparound Warning)
Database is not accepting commands to avoid wraparound data loss
Autovacuum launcher started

Autovacuum launcher shutting down

Automatic vacuum of table completed

Skipping vacuum - lock not available

What’s Missing

Aggregate autovacuum stats
(only available in logs)

How often a table is being vacuumed
Avg runtime of a vacuum
Tuples that couldn’t be removed

Backups

New pg_stat_progress_basebackup

New In Postgres 13

pg_stat_progress_basebackup

=# SELECT * FROM pg_stat_progress_basebackup ;

pid | phase | backup_total | backup_streamed | tablespaces_total | tablespaces_streamed
——————— e e e e i A ittt
35397 | waiting for checkpoint to finish | 0 | 0 | 0 | 0
(1 row)

=# SELECT *, backup_streamed / backup_total::float * 100 AS pct_done FROM pg_stat_progress_basebackup ;

pid | phase | backup_total | backup_streamed | tablespaces_total | tablespaces_streamed | pct_done
——————— e et it e it T b T ittt A i e

35397 | streaming database files | 63006018048 | 52671390720 | 1 | O | 83.59739648976586
(1 row)

What’s Missing

Client-side connection latency

Aggregation of security-relevant Postgres events
Aggregate Plan Statistics

Breakdown of non-waiting active state

Query Progress Monitoring

pgss: Better handling of IN(...) lists & other ORM patterns
Linking pg_stat_statements with other views & logs
Finding queries based on application requests/customers
Built-in Wait Event Aggregation

10. Aggregate information about effectiveness of Parallel Query
11. Aggregate Lock Statistics

12. Per-statement index scan/seq scan counters

13. Connection memory usage statistics

14. Aggregate autovacuum stats

©ONOORAWNA

New In Postgres 13

1. EXPLAIN: Buffers for Planning

2. pg_stat_statements: Planning Time

3. Additional & renamed wait events

4. pg_stat_activity: leader_pid for Parallel Query
5. EXPLAIN improvements for parallel workers
6. CONTEXT for failure of parameterized queries
/. pg_shmem_allocations

8. Per-statement WAL statistics

9. autovacuum WAL statistics

10. EXPLAIN WAL statistics

11. pg_stat_progress_analyze

12. pg_stat_progress_basebackup

Thank you!

lukas@fittl.com

@LukasFittl

mailto:lukas@fittl.com

